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SUMMARY

We solve an important open problem by deriving some readily verifiable necessary and sufficient

conditions for a multivariate non-Gaussian linear process to be time-reversible, under two sets of

regularity conditions on the contemporaneous dependence structure of the innovations. One set

of regularity conditions concerns the case of independent-component innovations, in which case

a multivariate non-Gaussian linear process is time-reversible if and only if the coefficients consist

of essentially symmetric columns with column-specific origins of symmetry or symmetric pairs of

columns with pair-specific origins of symmetry. On the other hand, for dependent-component

innovations plus other regularity conditions, a multivariate non-Gaussian linear process is time-

reversible if and only if the coefficients are essentially symmetric about some origin.
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1 INTRODUCTION & LITERATURE REVIEW

Symmetry is all pervasive in art and science. Dawid (1988) has emphasised its role in statis-

tics. In his discussion of the paper, Tong (op. cit., p. 30) has identified time-reversibility as

an additional symmetry for stationary time series, stationarity itself being an expression of sym-

metry. The stochastic process X is said to be time-reversible if its ensemble properties are in-

variant to the direction of time. In other words, X is time-reversible if for any finite set of

epochs t1, t2, · · · , tn, the probability distribution of {X(t1),X(t2), · · · ,X(tn)} is identical to that

of {X(−t1),X(−t2), · · · ,X(−tn)}. Time-reversibility often induces simpler probabilistic structure,

see Keilson (1979). In statistics, Lawrance (1991) has studied the issue of directionality in time se-

ries. Breidt and Davis (1992) has referred to the implications of time-reversibility to de-convolution.

Diks et al. (1995) has exploited time-reversibility to develop a criterion for discriminating time se-

ries. Economists and financial engineers have addressed the asymmetry of business cycles via the

notion of time-reversibility. (See, e.g. Ramsey and Rothman, 1995.) Tong and Zhang (2005) has

discussed the role of time-reversibility in the statistical inference of time series models. However,

almost all the discussions in the statistical literature to-date (Tong and Zhang (2005) being a rare

exception) are restricted to the case of univariate time series, leaving the more important but also

substantially more challenging case of multivariate time series virtually untouched.

Consider a p-dimensional linear process X driven by a q-dimensional independent and identi-

cally distributed innovation sequence ǫ defined by the equation:

X(t) =
∞∑

j=−∞

A(j)ǫ(t − j), t = · · · ,−2,−1, 0, 1, 2, · · · , (1)

where the coefficients A(j) are assumed to be square-summable such that
∑

j ‖A(j)‖2 < ∞. Here

for any matrix A = (aij), its square norm is defined as ‖A‖2 =
∑

i,j a2
ij . The square summability

condition of the innovations ensures that the linear process has finite second moments. Without

loss of generality, the innovations are assumed to be of zero mean. To rule out singularity in the

probability distribution, we further impose the regularity conditions that the innovations have a

positive-definite covariance matrix and the transfer function (Fourier transform of the coefficients)

2



Â(ω) =
∑

A(j) exp(−ijω) is of full-rank almost everywhere on the interval (−π, π] where i =
√
−1.

While q can be greater than p, such a model is generally non-invertible, i.e. the innovations cannot

be determined even if the entire X is known. Hence, we shall consider only the case when p ≥ q.

For a Gaussian linear process, it is well known (e.g. Tong and Zhang, 2005) that it is time-

reversible if and only if its autocovariances are all symmetric matrices. In particular, univariate

Gaussian processes are always time-reversible. For univariate non-Gaussian linear processes, time-

reversibility requires a more restrictive necessary and sufficient condition on the coefficients:

(NSC) There exist an integer m and a scalar b such that, for all t, (i) A(t) = A(−t + m)b and (ii)

bǫ(t) is distributionally equivalent to ǫ(t).

See Cheng (1999) and Tong and Zhang (2005). Indeed, the stronger condition owes to the fact that

the linear representation of a univariate non-Gaussian linear process is essentially unique while

this is generally not the case for a Gaussian process; see Findley (1986, 1990) and Cheng (1992).

Specifically, if the univariate non-Gaussian X admits another representation, say,

X(t) =
∞∑

j=−∞

A′(j)ǫ′(t − j), t = · · · ,−2,−1, 0, 1, 2, · · · , (2)

where ǫ′ is a sequence of independent and identically distributed innovations, then there exist b

and an integer m such that, for all t,

ǫ′(t − m) = bǫ(t), and A(t − m) = A′(t)b. (3)

See Rosenblatt (2000) for a review of statistical applications with non-Gaussian linear processes.

The situation with multivariate non-Gaussian linear processes is less clear and the problem

of necessary and sufficient conditions for time-reversibility has remained open. Tong and Zhang

(2005) obtained a necessary and sufficient condition for the case with arbitrary p ≥ 1 but q = 1,

i.e. univariate innovation sequence. They also derived a sufficient condition for time-reversibility

in the general case but showed by a counter-example that their condition is not necessary. The

Tong-Zhang condition requires that

(TZ) there exist an integer m and a matrix B such that, for all t, (i) A(t) = A(−t + m)B and (ii)

Bǫ(t) is distributionally equivalent to ǫ(t).

Note that it follows from (ii) of (TZ) that the determinant of B is 1 or −1, which can be readily

seen by equating the second moment of ǫ(t) and that of Bǫ(t).
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Recently, Chan and Ho (2004, Theorems 3, 4, and 7) extended the unique representation

result for univariate non-Gaussian linear processes to the multivariate case, which now depends on

the contemporaneous dependence structure of the innovations. To state their results, we need to

introduce some notation. Below, π denotes some permutation of the set {1, 2, · · · , q} where i is

permuted to π(i). We write the ith component of ǫ(t) as ǫi(t) and the ith column of A(j) as Ai(j).

Under the condition

(C1) the innovations consist of independent and identically distributed components,

they showed that the two linear representations (1) and (2) are related by the equations (for all t)

ǫ′i(t − m(i)) = biǫπ(i)(t), and Aπ(i)(t − m(i)) = A′

i(t)bi. (4)

for some scalars bi, integers m(i), i = 1, 2, · · · , q and permutation π of the set {1, 2, · · · ,m}. In other

words, the innovations in one representation are obtained by essentially shifting the innovations in

the other representations, although the shift may be component-specific. Similarly, the coefficients

in one representation are obtained by shifting their counterparts in the other representation with

the shift possibly column-specific. This variable shift is the reason why the TZ-condition is not

necessary for time-reversibility. Chan and Ho (2004) obtained the same uniqueness result stated in

(4) in the case of non-identical components under the following additional moment assumption.

(C2) The innovations have independent components and there exists an r ≥ 3 such that each

component of an innovation has non-zero rth cumulant. Also, each component admits a

finite τ -moment where τ is an even integer greater than r.

Intuitively, if the innovations are strongly, contemporaneously correlated, then the shifts in (4)

must be the same. Indeed, Chan and Ho (2004) showed that this is the case, i.e. there exist an

integer m and a matrix B such that

ǫ′(t − m) = Bǫ(t), and A(t − m) = A′(t)B, (5)

under the following conditions.

(C3) The innovation sequence ǫ admits an invertible BK for some K with an r ≥ 3, where

K = (k3, k4, ..., kr) is a multi-index, 1 ≤ ki ≤ q for all 3 ≤ i ≤ r, and the matrix BK is the q×q

matrix where the (i, j)th entry of BK is the cumulant αijK =cum(ǫi(t), ǫj(t), ǫk3(t), ..., ǫkr
(t)) .
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(C4) Any two linear combinations of ǫ (t) with non-zero coefficients must be stochastically depen-

dent.

Chan and Ho (2004) demonstrated that the preceding two conditions are satisfied if, e.g., the

innovations are multivariate t-distributed with a positive-definite covariance matrix.

In the univariate case, Cheng (1999, Theorem 1) showed that the uniqueness of the represen-

tation for a non-Gaussian process implies that if X is given by equation (1) and

Y (t) =
∑

A′(j)ǫ′(t − j), (6)

then Y is distributionally equivalent to X if and only if (3) holds, with the equality concerning

the innovations interpreted as equivalence in distribution. For the multivariate case, the situation

is much more challenging due to the vastly richer structure for the multivariate innovations. Be-

low, we shall extend Cheng’s characterization of distributionally equivalent linear processes to the

multivariate case.

2 MAIN RESULTS

Our first result is the aforementioned characterization of distributional equivalence of two linear

processes. As it is well known that two (centered) Gaussian processes are equivalent in distribution

if and only if they have identical spectrum, we shall focus on the case of non-Gaussian processes.

Theorem 1. Let X and Y be two non-Gaussian p − dimensional linear processes defined by (1)

and (6) respectively. Then X and Y are distributionally equivalent if and only if (4) holds under

conditions (C1) or (C2), or (5) holds under conditions (C3) and (C4), with equalities concerning

the innovations interpreted as equivalence in distribution.

The proof of this characterization result is given in an appendix.

Recent results on the uniqueness of the linear representation of a multivariate non-Gaussian lin-

ear process (and the above characterization of distributionally equivalent multivariate non-Gaussian

processes) enable us to derive necessary and sufficient conditions for time-reversibility, which is the

main purpose of this note.

Define Y (t) = X(−t). Then time-reversibility of X implies that X and Y are equivalent

in distribution. To state our results characterizing time-reversibility for the case of independent-

component innovations, we introduce the notion of a symmetric pair of columns of A. We say that
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the ith and jth columns of the coefficient sequence A form a symmetric pair if there exist a non-zero

scalar b and an integer m such that, for all t, Aj(−t−m) = Ai(t)b and ǫi(t) and bǫj(t) have identical

distribution. Notice that if i = j, the above notion of symmetry reduces to the requirement that

{Ai(t), t = · · · ,−1, 0, 1, · · ·} is essentially symmetric about −m/2. Assuming that the components of

an innovation term are independent plus some other regularity conditions, the following result shows

that time-reversibility holds if and only if the coefficient matrices consist of symmetric columns or

symmetric pairs of columns, with column- or pair-specific origins of symmetry.

Theorem 2. Let X be a non-Gaussian linear process defined by (1). Suppose that the innovations

have independent components and either (C1) or (C2) holds. Then X is time-reversible if and only

if it holds that

(C5) there exist scalars bi and integers m(i), i = 1, 2, · · · , q, a permutation π of {1, 2, · · · , q} such

that (i) π is the inverse of itself, i.e. for each i, π(i) = i or π(π(i)) = i, (ii) for all t, Aπ(i)(−t −
m(i)) = Ai(t)bi and (iii) ǫi(t) = biǫπ(i)(t), in distribution.

Note that if π(i) = i, (ii) and (iii) imply that the ith column of A is essentially symmetric about

−m(i)/2. On the other hand, if π(i) = j and j 6= i, (ii) and (iii) entail that the ith and jth

columns of A form a symmetric pair. Note that m(i) need not be identical and b(i) must be 1 or

−1 if π(i) = i. We remark that if q = 1, i.e. the case of univariate innovations, then (C1) trivially

holds and the preceding theorem implies the aforementioned result of Tong and Zhang (2005) that

condition (TZ) is necessary and sufficient for time-reversibility of X with q = 1.

If the innovations are contemporaneously dependent so that (C3) and (C4) hold, then the

following result says that time-reversibility occurs if and only if the coefficients are essentially

symmetric about some origin that is the same for each column.

Theorem 3. Let X be a non-Gaussian linear process defined by (1). Suppose that conditions (C3)

and (C4) hold. Then X is time-reversible if and only if condition (TZ) holds.

The proof of the theorem is similar to that of Theorem 2, and hence is omitted.

Finally, we note that a multivariate linear process generally arise from a vector stochastic

difference equation specified by an autoregressive-moving average model. Chan and Tong (2002)

showed that a general Markov process defined by a state-space model can be equivalently expressed

in terms of a vector stochastic difference equation, under some general regularity conditions. Thus,
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the results obtained herein may be useful for studying the time-reversibility of Markov simulation

techniques.
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Appendix 1 Proof of Theorem 1.

Assume (C1) holds. The sufficiency part of the Theorem can be seen by the following equalities

obtained via (4), where
D
= denotes equality in distribution.

Y (t) =
∞∑

j=−∞

A′(j)ǫ′(t − j)

=
q∑

i=1

∞∑

j=−∞

A′

i(j)ǫ
′

i(t − j)

D
=

q∑

i=1

∞∑

j=−∞

A′

i(j)biǫπ(i)(t − j + m(i))

=
q∑

i=1

∞∑

j=−∞

Aπ(i)(j − m(i))ǫπ(i)(t − j + m(i))

=
q∑

i=1

∞∑

j=−∞

Aπ(i)(j)ǫπ(i)(t − j)

=
∞∑

j=−∞

A(j)ǫ(t − j)

= X(t).

We now verify the necessity part of the Theorem by adapting the proof technique of Cheng

(1999, Theorem 1) to our case. Let HX and HY denote the Hilbert spaces generated by X and

Y respectively. As a result of the distributional equivalence of X and Y , the correspondence

X(t) ↔ Y (t) can be naturally extended to show that HX and HY are isometric isomorphic. Because

Â is of full-rank almost everywhere, Lemma 2 of Chan and Ho (2004) implies that ǫ(t) ∈ HX . Then

there exists V (t) ∈ HY corresponding to ǫ (t) ∈ HX . As a result of the equivalence and isometric

isomorphism, the V s are independent and identically distributed with the same distribution as ǫs
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and Y (t) =
∑

A(j)V (t − j). Then

Y (t) =
∑

A(j)V (t − j) =
∑

A′(j)ǫ′(t − j).

By (4), we have

ǫ′i(t − m(i)) = biVπ(i)(t), and Aπ(i)(t − m(i)) = A′

i(t)bi.

Because V has the same distribution as ǫ, we conclude that ǫ′i(t−m(i)) = biǫπ(i)(t) in distribution,

which completes the proof of the necessity part of the Theorem. The proofs of the Theorem under

the other regularity conditions are similar and hence are omitted.

Appendix 2 Proof of Theorem 2.

Recall that Y (t) = X(−t) =
∑

A′(j)ǫ′(t − j) where A′(j) = A(−j) and ǫ′(t) = ǫ(−t), for all j and

t. Time-reversibility of X holds if and only if X and Y are equivalent in distribution, which is

equivalent to the validity of (4). In turn, this is equivalent to the requirement that there exist bi,

integers m(i), i = 1, 2, · · · , q and a permutation π of the set {1, 2, · · · ,m} such that, for all t,

(a) ǫi(−t + m(i)) = biǫπ(i)(t), in distribution, and

(b) Aπ(i)(t − m(i)) = Ai(−t)bi

(A1)

Note that (a) can be re-written as ǫi(t) = biǫπ(i)(t) in distribution, because ǫ consists of indepen-

dent and identically distributed variables. Also, (b) is equivalent to the condition that, for all t,

Aπ(i)(−t − m(i)) = Ai(t)bi. Thus, the sufficiency of (C5) for time-reversibility is then clear.

It remains to verify the necessity of (C5). So, suppose that (a) and (b) holds. It follows from

(a) that bi are non-zeroes. Now, it is well-known (Herstein, 1996, Theorem 3.2.2) that π can be

written as a product (composition) of disjoint cycles

π = C1C2...Cr

where each cycle is of the form Ck = (j1j2....jl(k)), i.e. a permutation that maps j1 to j2, j2 to

j3, ..., and jl(k) back to j1. Here ji are distinct integers in {1, 2, ..., q} . For the sake of simplicity we

first discuss the following two cases.
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Case 1: q = 2, π (1) = 2, π (2) = 1. Note that π is an even permutation here. In this case (b)

implies that there exist m(i), i = 1, 2 and for all t

A1 (t) = A2 (−t − m (1)) /b1 (A2)

A2 (t) = A1 (−t − m (2)) /b2, (A3)

ǫ1(t) and b1ǫ2(t) have identical distribution, and so do ǫ2(t) and b2ǫ1(t). Therefore, ǫ1(t) and

b1b2ǫ1(t) have identical distribution, entailing that b1b2 = ±1. Equation (A2) implies that A2(t) =

A1(−t − m(1))b1 which equals A2(t + m(1) − m(2)b1b2, by (A3). Hence, for all t, A2(t) = A2(t +

2(m(1) − m(2))). If m(1) 6= m(2), A2 is periodic with a positive period, but then A2 must be

zero because of the square summability of A. Because Â is of full-rank almost everywhere, it is

impossible for A2 to be zero. We conclude that m(2) = m(1) = m and b1b2 = ±1. This shows

that b1A1 and A2 are symmetric images of each other about −m/2 and ǫ1 and b1ǫ2 have identical

distribution.

Case 2. q = 3, π (1) = 2, π (2) = 3, π (3) = 1. Note that π is an odd permutation here. In this

case (b) implies

A1 (t) = A2 (−t − m (1)) /b1

= A3 (t + m (1) − m (2)) /b1b2

= A1 (−t − m (1) + m (2) − m (3)) /b1b2b3

In the same manner from conclusion (a) we get ǫ1(t) and ǫ1(−t+m(1)−m(2)+m(3))b1b2b3 having

the same distribution. Similarly, the other components of A(t) and ǫ(t) satisfy analogous equations.

In the general case that π = C1C2...Cr where Ck are disjoint cycles, it follows from the above

two cases that (a) for even cycles Ck the corresponding columns can be paired up as Ai, Aπ(i) so that

they have the same property as in case 1, and (b) for odd cycles Ck the columns Aj1 (t) , ..., Ajl(k)
(t)

are related in a similar manner as in case 2 so that they are equivalent to products of singleton

cycles. Thus, conditions (i)–(iii) in the statement of the Theorem hold. This completes the proof

of the necessity of (C5).
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